RPC Gas Mixture Purification

GIF Activity Update

M. Capeans, I. Glushkov, R. Guida

RPC Gas Task Force Meeting CERN , 02.11.2008

Purification studies

Observations

from previous studies

- GIF (source '00-'04)
 - Impurities
 - Recirculation fraction
- ISR (no source, '06 '08)
 - Currents increase

Objectives

- Understand RPC irradiated gas mixture
- Systematic Understanding of purifiers
- Finding the optimal configuration of purifiers for LHC closed loop gas system operation

Current Status

- > HF production
- Impurities Investigations
- Planning

Reference: <u>Studies of purification of the RPC gas</u> mixture for the LHC experiments – Capeans et al., <u>IEEE2008</u>

HF production

Varying the concentration of SF₆ or iC₄H₁₀ give

No clear benefits

Technique:

For each gas mixture:

- Measure the F⁻ concentration vs. time. (using Ion Selective Electrode)
- 2. Estimate the F⁻ production rate. (from the increase of the concentration)
- 3. Look at the effect on the chamber efficiency.

Impurities Investigation Set-Up

Hardware

- •5 CMS Double Gaps (HV, Gas etc.)
- Updated ATLAS GIF gas system
- Added purifier rack
- μGC/MS used for gas composition analysis

Purifiers Tested:

- Molecular Sieve 3A
- Molecular Sieve 4A
- Molecular Sieve 5A
- CuO (BASF R11)
- CuO/ZnO (BASF R12)
- Ni/Al₂O₃ (Leuna 6525)
- Ni/SiO₂ (Leuna 6503)

Conditions:

- Open Mode
- HV = 9200 V
- Flow (RPC) = 1 vol/h
- Flow (Purifier) =3 l/h/purifier
- Taken into account
 - Temperature
 - Humidity
 - Atm. Pressure
 - Radiation

Input to the RPC

Return from the RPC

Purifiers: Conditioning

In the first hours of operation many purifiers affect also the main components of the mixture. The result is a change of the mixture composition.

Problem solved with a **conditioning phase** before being used in the loop.

Filtering capacity for Ni/Al₂O₃

Purifiers: Performance

	Conditioning (Purifier volume change)	Main component filtered	CH₄	?	C₂H₂F₂	CF ₄ SO	CH₂F₂	C₂HF₃	C₂H₃F₃	C₃H ₆
MS3A	3	H ₂ O	Unchanged	Not present	Unchanged	Removed	Unchanged	Unchanged	Unchanged	Unchanged
MS4A	10	H₂O	Unchanged	Not present	Unchanged	Removed	Removed	Unchanged	Removed	Removed
MS5A	50	H₂O	Unchanged	Not present	Back after 1000 vol change	Removed	Removed	Removed	Removed	Removed
Cu (Basf R11)	20	O ₂	Unchanged	Not present	Unchanged	Removed	Unchanged	Removed	Removed	~Removed
Cu/Zn (Basf R12)	20	O ₂	Unchanged		Enhanced after 900 vol change	Removed	Unchanged	Removed	Removed	Present up to 450 vol change
Ni Al2O3 (Leuna)	15	O ₂	Unchanged	Not present	Unchanged	Removed	Unchanged	Removed	Present up to 150 vol change	Present up to 150 vol change
Ni SiO2 (Leuna)	15	O ₂	Unchanged	Present up to 400 vol change	Unchanged	Removed	Unchanged	Removed	Unchanged	Unchanged

Summary

> Chamber performance verification with radiation

> Reference bakelite resistivity measurement

> Assembly and calibration of F- measurement setup

> HF concentrations for different iC_4H_{10} and SF_6 concentrations

> Detailed analysis of the standard LHC purifiers' effect on the RPC gas mixture.

Problems:

- ✓ µGC precision
- ✓ Pump break down
- ✓ Gas leak
- ✓ Several power cuts
- ✓ GIF maintenance stop

Mostly solved but caused **delay**

Short-Term Plan

- Move GC/MS, install it and test it (IG)
- Characterize again purifiers (IG)
- Get Si-gel cartridge and install it (RG)
- Test Si-Gel (IG)
- Set-up the long-term test with selected purifiers (Cu, Ni, MS4A)

Long-Term Plan

- Running on the current configuration to complete measurements for one or two months more.
- Update the purifiers' table and choose the "best" configuration.
- Add a new double gap after the filters (without radiation) and check the stability for a few months.
- Switch to close loop and try to reach the 10 ATLAS/CMS equivalent years.